Data Warehouse Failover Cluster for Analytical Queries in Banking

Author:

Sivov V. V.1ORCID,Bogatyrev V. A.1ORCID

Affiliation:

1. ITMO University

Abstract

Introduction. The banking sector assigns high priority to data storage, as it is a critical aspect of business operations. The volume of data in this area is steadily growing. With the increasing volume of data that needs to be stored, processed and analyzed, it is critically important to select a suitable data storage solution and develop the required architecture. The presented research is aimed at filling the gap in the existing knowledge of the data base management system (DBMS) suitable for the banking sector, as well as to suggest ways for a fault-tolerant data storage cluster. The purpose of the work is to analyze the key DBMS for analytical queries, determine the priorities of the DBMS for the banking sector, and develop a fault-tolerant data storage cluster. To meet the performance and scalability requirements, a data storage solution with a fault-tolerant architecture that meets the requirements of the banking sector has been proposed.Materials and Methods. Domain analysis allowed us to create a set of characteristics that a DBMS for analytical queries (OnLine Analytical processing — OLAP) should correspond to, compare some popular DBMS OLAP, and offer a fault-tolerant cluster configuration written in xml, supported by the ClickHouse DBMS. Automation was done using Ansible Playbook. It was integrated with the Gitlab version control system and Jinja templates. Thus, rapid deployment of the configuration on all nodes of the cluster was achieved.Results. For OLAP databases, criteria were developed and several popular systems were compared. As a result, a reliable cluster configuration that met the requirements of analytical queries has been proposed for the banking industry. To increase the reliability and scalability of the DBMS, the deployment process was automated. Detailed diagrams of the cluster configuration were also provided.Discussion and Conclusions. The compiled criteria for the DBMS OLAP allowed us to determine the need for this solution in the organization. Comparison of popular DBMS can be used by organizations to minimize costs when selecting a solution. The proposed configuration of the data warehouse cluster for analytical queries in the banking sector will improve the reliability of the DBMS and meet the requirements for subsequent scalability. Automation of cluster deployment by the mechanism of templating configuration files in Ansible Playbook provides configuring a ready-made cluster on new servers in minutes.

Publisher

FSFEI HE Don State Technical University

Reference21 articles.

1. Sivov VV. Data Security in the Business Analytics System. In: Proc. IV All-Russian Sci.-Pract. Conference with international participation “Information Systems and Technologies in Modeling and Control”. 2019. P. 142–145.

2. Solomon Negash, Paul Gray. Business Intelligence. In: Handbook on Decision Support Systems 2. Springer, Berlin, Heidelberg; 2008. P. 175–193.

3. Imhoff C, Galemmo N, Geiger JG. Mastering Data Warehouse Design: Relational and Dimensional Techniques. John Wiley & Sons; 2003. 456 p.

4. Hugh J Watson. Tutorial: Business Intelligence – Past, Present, and Future. Communications of the Association for Information Systems. 2009;25:39. https://doi.org/10.17705/1CAIS.02539

5. Roscoe Hightower, Mohammad Shariat. Conceptualizing Business Intelligence Architecture. Marketing Management Journal. 2007;17:40–46.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3