On the ambiguity of mechanical power

Author:

Pavlov V. D.1ORCID

Affiliation:

1. Vladimir Electromechanical Plant

Abstract

Introduction. Mechanical vibrations are widespread in the production processes. The drives of machines and mechanisms are mainly electromechanical, so mechanical reactive power is transformed into electrical reactive power of the network, impairing the quality of electricity. This explains the significance of considering the mechanical reactive power, and, as a consequence, the urgency of the presented study. The research objective is to detail the types of mechanical power under harmonic vibrations.Materials and Methods. The literature on the issues of dynamics, kinematics, vibrations, transformation of motion in oscillatory systems, etc., has been studied. Theoretical, mainly mathematical methods of research are used.Results. The powers developed under elastic deformations, forced harmonic vibrations of an inert body, and vibrations associated with gravitational influence, as well as reactive, active, full powers in the complex formulation, and mechanical powers in the vector representation are mathematically interpreted.Discussion and Conclusions. Under the mechanical harmonic vibrations, along with the sign-positive thermal power, sign-variable reactive powers develop, characterizing the reversibility of kinetic and potential energies. The total mechanical power satisfies the Pythagorean formula. The concept of mechanical reactive, active, and total powers generalizes the corresponding concepts of power from electrical engineering, and thus manifesting electromechanical dualism.

Publisher

FSFEI HE Don State Technical University

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mathematical Model of an Oscillator of Arbitrary Frequency;Russian Engineering Research;2023-06

2. MECHANICAL ROTATION STABILIZER;Transport engineering;2022-11-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3