Solving the Problem of Determining the Mechanical Properties of Road Structure Materials Using Neural Network Technologies

Author:

Babushkina N. E.1,Lyapin A. A.1

Affiliation:

1. Don State Technical University

Abstract

Introduction. Determination of mechanical properties of layered structures of highways is an urgent task. This is due, firstly, to the need to control the quality of new sections during the construction of highways. Secondly, to assess the condition of existing roads with the accumulation of damage and defects is of interest. The formation of multiple defects (cracks) changes the averaged viscoelastic properties of the components of the structure, specifically, the surface asphalt-concrete layers. The article discusses the use of neural network technologies to improve the accuracy of the recovery of viscoelastic properties. This approach is based on experimental methods. As an example, we can give the definition of the dynamic deflection of a structure from a falling weight, FWD.Materials and Methods. The elastic modulus of a three-layer structure was determined on the basis of a neural network. To find out the solution accuracy, it was compared to the results of mathematical modeling and experimental data.Results. The experimental and calculated parameters of the elastic modulus of individual layers of the road structure turned out to be very close. The proposed approach to determining the mechanical properties of materials of road structures allowed us to apply the obtained results to examination of the condition of individual elements and the entire road structure.Discussion and Conclusions. The prospects of using artificial intelligence to determine the mechanical properties of layered structures was shown. Further improvement of methods and tools for analyzing the behavior of road structures under dynamic loading will expand existing approaches to assessing the condition of road structures.

Publisher

FSFEI HE Don State Technical University

Reference16 articles.

1. Федосов, А. В. Методы неразрушающего контроля / А. В. Федосов, Л. А. Гайнуллина // Электротехнические и информационные комплексы и системы. — 2015. — Т. 11. — С. 73–78.

2. Kychkin, V. I. Not Destroying Dynamic Quality Monitoring of Road Clothes / V. I. Kychkin, V. S. Jushkov // Naukovedenie. — 2013. — Vol. 14. — P. 34.

3. Углова, Е. В. Оценка модулей упругости слоев дорожной одежды на стадии эксплуатации автомобильных дорог / Е. В. Углова // Вестник Томского государственного архитектурно-строительного университета. — 2009. — № 2. — С. 170–178.

4. Углова, Е. В. Комплексный подход к исследованию характеристик динамического деформирования на поверхности нежестких дорожных одежд с использованием методов неразрушающего контроля / Е. В. Углова, А. Н. Тиратурян, А. А. Ляпин // Вестник Пермского национального исследовательского политехнического университета. Механика. — 2016. — № 2. — С. 111–130. https://doi.org/10.15593/perm.mech/2016.2.08

5. Тиратурян, А. Н. Оценка деградации прочности нежестких дорожных конструкций на основе натурных измерений на участке автомобильной дороги М-4 «Дон» в п. Тарасовский / А. Н. Тиратурян, С. А. Ольховой // Инженерный вестник Дона. — 2017. — № 2. — С. 122.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3