Challenge of the performance management of trust control systems with deep learning

Author:

Zelensky A. A.1ORCID,Abdullin T. K.1ORCID,Zhdanova M. M.1ORCID,Voronin V. V.1ORCID,Gribkov A. A.1ORCID

Affiliation:

1. Moscow State Technological University “STANKIN”

Abstract

Introduction. The significance of machine learning under the conditions of digital transformation of industry, and methods of implementing deep learning to provide the performance of trust management systems are considered. The necessity of using convolutional artificial neural networks for deep machine learning is determined. Various technologies and architectures for the implementation of artificial neural networks are briefly considered; a comparative analysis of their performance is carried out. The work objective is to study the need to develop new approaches to the architecture of computing machines for solving problems of deep machine learning in the trust management system implementation.Materials and Methods. In the context of digital transformation, the use of artificial intelligence reaches a new level. The technical implementation of artificial neural systems with deep machine learning is based on the use of one of three basic technologies: high performance computing (HPC) with parallel data processing, neuromorphic computing (NC), and quantum computing (QC).Results. Implementation models for deep machine learning, basic technologies and architecture of computing machines, as well as requirements for trust assurance in control systems using deep machine learning are analyzed. The problem of shortage of computation power for solving such problems is identified. None of the currently existing technologies can solve the full range of learning and impedance problems. The current level of technology does not provide information security and reliability of neural networks. The practical implementation of trust management systems with deep machine learning based on existing technologies for a significant part of the tasks does not provide a sufficient level of performance.Discussion and Conclusions. The study made it possible to identify the challenge of the computation power shortage for solving problems of deep machine learning. Through the analysis of the requirements for trust management systems, the external challenges of their implementation on the basis of existing technologies, and the need to develop new approaches to the computer architecture are determined.

Publisher

FSFEI HE Don State Technical University

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Action recognition algorithm from visual sensor data for contactless robot control systems;Artificial Intelligence and Machine Learning in Defense Applications IV;2022-10-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3