Optimal Temperature Calculation for Multicriteria Optimization of the Hydrogenation of Polycyclic Aromatic Hydrocarbons by NSGA-II Method

Author:

Alexandrova A. A.1ORCID,Koledin S. N.1ORCID

Affiliation:

1. Ufa State Petroleum Technical University

Abstract

Introduction. Multicriteria optimization, taking into account contradicting criteria, is used to improve production efficiency, reduce costs, improve product quality and environmental safety of processes. The literature describes the application of multicriteria optimization for production purposes, including the selection of reaction conditions and improvement of technological processes. In the presented paper, the object of research is the process of hydrogenation of polycyclic aromatic hydrocarbons (PAH) in the production of high-density fuels. To determine the optimal conditions of the process, the problem of multicriteria optimization based on the kinetic model is solved. The criteria include maximizing the yield of targeted naphthenes and conversion of feedstock. The research objective is to create a program implementing the multicriteria optimization non-dominated sorting genetic algorithm-II (NSGA-II). Due to this, it is possible to calculate the optimal temperature for the PAH hydrogenation process on the basis of the kinetic model.Materials and Methods. The NSGA-II genetic algorithm was used to solve the multicriteria optimization problem. Modified parental and survival selection within the Pareto front was also used. If it was necessary to divide the front, solutions based on the Manhattan distance between them were selected. The program was implemented in Python.Results. In the system of ordinary nonlinear differential equations of chemical kinetics, the concentration was designated yi, the conditional contact time of the reaction mixture with the catalyst — τ. The system was solved for the hydrogenation reaction of polycyclic aromatic hydrocarbons. The calculations showed that at τ = 0 y1(0) = 0.025; y2(0) = 0.9; y6(0) = 0.067; y9(0) = 0.008; yi(0) = 0, i = 3–5, 7, 8, 10–20; Q(0) = 1. The process temperature was considered as a control parameter according to two optimality criteria: maximizing the yield of target naphthenes (f1) at the end of the reaction, and maximizing the conversion of feedstock (f2). Values f1 were in the range of 0.43–0.79; conversion — 0.01–0.03; temperature — 200–300 K. The growth of temperature was accompanied by an increase in the yield of target naphthenes and a decrease in the conversion of feedstock. Each solution obtained was not an unimprovable one. When modeling the process of hydrogenation of PAH, an algorithm was launched with a population size of 100 and a number of generations of 100. A program implementing the NSGA-II algorithm was developed. The optimal set of values of the PAH hydrogenation reaction temperature was calculated, which made it possible to obtain unimprovable values of the optimality criteria — maximizing the yield of target naphthenes and conversion of feedstock.Discussion and Conclusion. The NSGA-II algorithm is effective for solving the problem of non-dominance, and deriving the optimal solution for all criteria. Future research should be devoted to the selection of optimal algorithm parameters to increase the speed of the solution. Based on the obtained theoretical optimal conditions of the PAH hydrogenation reaction, it is possible to implement the process in industry

Publisher

FSFEI HE Don State Technical University

Reference15 articles.

1. Akhmetov AF, Akhmetov AV, Zagidullin ShG, Shayzhanov NS. Hydrofinery Processing Heavy Fraction of Aromatic Hydrocarbons C10+ on Catalyzer Nickel on Kizelgur. Bashkir Chemical Journal. 2018;25(1):96–98. https://doi.org/10.17122/bcj-2018-1-96-98

2. Akhmetov AF, Akhmetov AV, Shayzhanov NS, Zagidullin ShG. Hydrogenolysis of Residual Fractions Obtained by Pyrolysis Process. Bashkir Chemical Journal. 2017;24(2):29–32. URL: https://bcj.rusoil.net/files/slider/BCJ-2-2017.pdf (accessed: 07.11.2023).

3. Shayzhanov NS, Zagidullin ShG, Akhmetov AV. Activity Analysis of Hydrogenation Catalysts in the Process of High-Density Jet Fuels Production. Bashkir Chemical Journal. 2014;21(2):94–98. URL: https://cyberleninka.ru/article/n/analiz-aktivnosti-katalizatorov-gidrirovaniya-v-protsesse-polucheniya-vysokoplotnyh-reaktivnyh-topliv/viewer (accessed: 07.11.2023).

4. Koledina KF, Koledin SN, Karpenko AP, Gubaydullin IM, Vovdenko MK. Multi-Objective Optimization of Chemical Reaction Conditions Based on a Kinetic Model. Journal of Mathematical Chemistry. 2019;57(2):484–493. https://doi.org/10.1007/s10910-018-0960-z

5. Emmerich M, Deutz A. Multicriteria Optimization and Decision Making: Master Course. Leiden: Leiden University Publishing; 2014. 102 p. URL: https://liacs.leidenuniv.nl/~emmerichmtm/modapage/MCOReaderEmmeirchDeutz2017.pdf (accessed: 17.11.2023).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3