Modeling and Predicting PM2.5 Concentration at a Construction Site Using the Artificial Intelligence

Author:

Manzhilevskaya S. E.1ORCID

Affiliation:

1. Don State Technical University

Abstract

Introduction. High concentration of PM2.5 has the adverse effect on people's health. According to the evaluations made by the researchers, the impact of the particulate matter from the construction dust emissions resulted in 18% of deaths from respiratory diseases. Due to the growth of construction production volume and consequent increase of dust emission volumes, there arises the need to expand the scope of using the end-to-end technologies, namely the artificial intelligence technologies, for predicting the fine-dispersed dust particles PM2.5 concentration in dust emissions at the construction site.Materials and methods. To achieve this goal, the measurements of PM2.5 concentration at the construction site were carried out using the Handheld 3016 IAQ particle counter in the period from July 1 to July 6, 2023 taking into account the meteorological characteristics of the territory, which then became the input data for modelling the forecast of dust pollution concentration using such algorithms as ARIMA, EMA, XGBoost, etc., and the ensemble models that included the above machine learning algorithms. The efficiency of using these technologies for predicting was determined by comparing the results of the forecast and the field measurements data.Results. A correlation analysis was performed using the Modeltime program, which determined the relationship between PM2.5 concentration and meteorological variables. Autocorrelation was performed using Pearson correlation. At the first stage, four one-dimensional models based on the artificial intelligence were evaluated to determine the accuracy of mean concentration forecast. The next step was to evaluate the capacity of predicting the mean PM2.5 concentration using the multidimensional models that took into account the relationships between the independent and dependent variables. At the final stage of the research, three most efficient predictive models were included to test the ensemble model.Discussion and conclusion. The reliable predictive models can be the useful tools for understanding the concentration impact factors. In the present research, seven machine learning algorithms were used to predict the concentration of PM2.5. The research, as a whole, presents the evidences of the integrated modeling method efficiency for predicting the air pollution. 

Publisher

FSFEI HE Don State Technical University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3