COVID-19 pandemic; transmembrane protease serine 2 (TMPRSS2) inhibitors as potential drugs.

Author:

Jankun JerzyORCID

Abstract

Ongoing search for treatment to ease COVID-19 pandemic concentrate on development of a vaccine or medication to prevent and treat this disease. One of the possibilities is developing new antiviral drugs that are aiming at both a virus replication or the host factor(s) that are critical to virus’s replication. Serine proteases, which activate the viral spike glycoproteins and facilitate virus-cell membrane fusions for host cell entry, its replication and spread, are proposed as the potential targets for antiviral drug design. Existing literature is already providing evidence that transmembrane protease serine 2 (TMPRSS2) is one of the promising targets. When inhibited it can slow or stop replication of viruses including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). One of the convincing evidences of the critical role of TMPRSS2 in the coronavirus’s replication was provided by animal study. The replication of influenza viruses was inhibited in TMPRSS2(-/-) knockout mice in comparison to wild type (WT) mice, which developed high mortality rate. Existing inhibitors of TMPRSS2 can be divided into two groups. The first include drugs already approved by FDA or other organizations for treatment of different diseases. That include: Camostat (from Japan, produced by Ono Pharmaceutical), aprotinin (Trasylol, produced by Nordic Group Pharmaceuticals) and rimantadine (Flumadine, produced by Forest Pharmaceuticals, Inc.). Existing in vitro, in vivo and some limited human studies show that this type of drugs limit reproduction of coronaviruses and/or prevented the development of viral pneumonia. One study indicated that combined treatment by aprotinin and rimantadine prevented the development of fatal hemorrhagic viral pneumonia, and protected about 75% animals, when the separate administration of aprotinin or rimantadine induced less protection. The second group includes potential drugs not approved for the human use yet. That include plasminogen activator inhibitor type 1 (PAI-1) and recently developed small molecular inhibitors. PAI-1 is a serine protease inhibitor that regulates physiological breakdown of blood clots by inhibiting of tissue (tPA) and urokinase (uPA) plasminogen activators. But PAI-1 is also an effective inhibitor of various membrane-anchored serine proteases including TMPRSS2. It was reported that PAI-1 inhibited trypsin- and TMPRSS2-mediated cleavage of hemagglutinin and suppressed influenza virus in animals. PAI-1 is human in origin and engineered forms with extended half-life were developed and could be an attractive addition to the existing TMPRSS2 inhibitors. And finally, derivatives of sulfonylated 3-amindinophenylalanylamide were found to inhibit TMPRSS2 with a high affinity and efficiently block the influenza virus propagation in human cells. This paper is intended to provide review on possible or hypothetical beneficial effects of (TMPRSS2) inhibitors as one of options to fight infection with Covid-19.

Publisher

University of Toledo

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3