CHANGE IN MICROSTRUCTURE AND HARDNESS OF ADDITIVELY MANUFACTURED AISI H13 STEEL BY HEAT TREATMENT AND NITRIDING PROCESSES

Author:

Trinh Trung VanORCID,Nguyen Son Anh,Pham Khanh GiaORCID,Seidel ChristianORCID,Pham Anh HoangORCID,Phung Cuong Nhu

Abstract

AISI H13 steel samples were additively manufactured using a laser powder bed fusion (LPBF) system. The effect of annealing tem-perature, quenching & tempering, and nitriding were determined. The microstructure and properties of the samples were investigated using optical microscopy, scanning electron microscopy, electron backscattered diffraction, electron probe micro-analysis, X-ray diffraction, roughness measurement, and a hardness tester. The results show that the as-built AISI H13 steel sample had a roughness on the surface and pores inside. The microstructure consisted of martensite and retained austenite. The average hardness was 460 HV, and the porosity was 0.086 %. The annealing process helped homogenize the microstructure, increase the density, and reduce the porosity and hardness of the LPBF-manufactured sample. The quenching process helped increase the hardness of the steel to the maximum of 787 HV, then the tempering process reduced the hardness to 572 HV. Heat treatment and nitriding processes tended to increase the martensite block size, reduce the retained austenitic content, and precipitate the V-Mo-rich carbide in the LPBF-manufactured AISI H13 steel. After nitriding was conducted, the nitriding case depth was 87 um, and the surface hardness increased up to higher than 1020 HV due to the formation of CrN and Fe3-4N.

Publisher

SciCell

Subject

Metals and Alloys

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3