Estimating lighting direction in scenes with multiple objects

Author:

Peterson Lindsay M.ORCID,Kersten Daniel J.,Mannion Damien J.

Abstract

AbstractTo recover the reflectance and shape of an object in a scene, the human visual system must account for the properties of the light illuminating the object. Here, we examine the extent to which multiple objects within a scene are utilised to estimate the direction of lighting in a scene. In Experiment 1, we presented participants with rendered scenes that contained 1, 9, or 25 unfamiliar blob-like objects and measured their capacity to discriminate whether a directional light source was left or right of the participants’ vantage point. Trends reported for ensemble perception suggest that the number of utilised objects—and, consequently, discrimination sensitivity—would increase with set size. However, we find little indication that increasing the number of objects in a scene increased discrimination sensitivity. In Experiment 2, an equivalent noise analysis was used to measure participants’ internal noise and the number of objects used to judge the average light source direction in a scene, finding that participants relied on 1 or 2 objects to make their judgement regardless of whether 9 or 25 objects were present. In Experiment 3, participants completed a shape identification task that required an implicit judgement of light source direction, rather than an explicit judgement as in Experiments 1 and 2. We find that sensitivity for identifying surface shape was comparable for scenes containing 1, 9, and 25 objects. Our results suggest that the visual system relied on a small number of objects to estimate the direction of lighting in our rendered scenes.

Funder

Australian Government

Australian Research Council

Publisher

Springer Science and Business Media LLC

Subject

Linguistics and Language,Sensory Systems,Language and Linguistics,Experimental and Cognitive Psychology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3