Hello from the other side: Robust contralateral interference in tactile detection

Author:

Kusnir Flor,Pesin Slav,Landau Ayelet N.

Abstract

AbstractTouch is unique among the sensory modalities in that our tactile receptors are spread across the body surface and continuously receive different inputs at the same time. These inputs vary in type, properties, relevance according to current goals, and, of course, location on the body. Sometimes, they must be integrated, and other times set apart and distinguished. Here, we investigate how simultaneous stimulation to different body sites affects tactile cognition. Specifically, we characterized the impact of irrelevant tactile sensations on tactile change detection. To this end, we embedded detection targets amidst ongoing performance, akin to the conditions encountered in everyday life, where we are constantly confronted with new events within ongoing stimuli. In the set of experiments presented here, participants detected a brief intensity change (.04 s) within an ongoing vibrotactile stimulus (1.6 s) that was always presented in a constantly attended location. The intensity change (i.e., the detection target) varied parametrically, from hardly detectable to easily detectable. In half of the trials, irrelevant ongoing stimulation was simultaneously presented to a site across the body midline, but participants were instructed to ignore it. In line with previous bimanual studies employing brief onset targets, we document robust interference on performance due to the irrelevant stimulation at each of the measured body sites (homologous and nonhomologous fingers, and the contralateral ankle). After describing this basic phenomenon, we further examine the conditions under which such interference occurs in three additional tasks. In each task, we honed in on a different aspect of the stimulation protocol (e.g., hand distance, the strength of the irrelevant stimulation, the detection target itself) in order to better understand the principles governing the observed interference effects. Our findings suggest a minimal role for exogenous attentional capture in producing the observed interference effects (Exp. 2), and a principled distribution of attentional resources or sensory integration between body sides (Exps. 3, 4). In our last study (Exp. 4), we presented bilateral tactile targets of varying intensities to both the relevant and irrelevant stimulation sites. We then characterized the degree to which the irrelevant stimulation is also processed. Our results—that participants’ perception of target intensity is always proportional to the combined bilateral signal—suggest that both body sites are equally weighed and processed despite clear instructions to attend only the target site. In light of this observation and participants’ inability to use selection processes to guide their perception, we propose that bilateral tactile inputs are automatically combined, quite possibly early in the hierarchy of somatosensory processing.

Funder

Freie Universität Berlin

Publisher

Springer Science and Business Media LLC

Subject

Linguistics and Language,Sensory Systems,Language and Linguistics,Experimental and Cognitive Psychology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Pupil dilation reveals the intensity of touch;Psychophysiology;2024-02-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3