Automatic capture of attention by flicker

Author:

Stolte MoritzORCID,Ansorge Ulrich

Abstract

AbstractVisual motion captures attention, but little is known about the automaticity of these effects. Here, we tested if deviant flicker frequencies, as one form of motion, automatically capture attention. Observers searched for a vertical target among tilted distractors. Prior to the target display, a cue array of sinusoidally modulating (flickering) annuli, each surrounding one location of the subsequent target(-plus-distractors) display was presented for variable durations. Annuli either flickered all at 1 Hz (neutral condition, no-singleton cue), or a single annulus flickered at a unique frequency of 5 Hz, 10 Hz, or 15 Hz. The location of this singleton-frequency cue was uncorrelated with target location. Thus, we could measure benefits (target at cued location) and costs (target ≠ cued location) for cues of different frequencies and durations. The results showed that deviant flicker frequencies capture attention, as we observed benefits and costs, falsifying that nonspatial filtering accounted for the cueing effect. In line with automatic capture, cueing was effective in singleton (Experiment 1) and nonsingleton search tasks (Experiment 2), and is thus not dependent on (“top-down”) singleton detection mode. Moreover, analysis of results ruled out trial-by-trial “swapping” of flicker frequencies from preceding target to subsequent distractor locations. Results also revealed increasing cueing effects with higher cue flicker frequency and longer duration. This indicates a significantly longer period of automatic capture by sinusoidal flicker than the typical inhibition of return observed around 250 ms after the onset of uninformative static or single-transient cues.

Funder

University of Vienna

Publisher

Springer Science and Business Media LLC

Subject

Linguistics and Language,Sensory Systems,Language and Linguistics,Experimental and Cognitive Psychology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The effect of rear bicycle light configurations on drivers’ perception of cyclists’ presence and proximity;Accident Analysis & Prevention;2024-03

2. Improving Stability in Simultaneous Speech Translation: A Revision-Controllable Decoding Approach;2023 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU);2023-12-16

3. Flickering presentations do affect the judgment of learning but not the learning outcome;Applied Cognitive Psychology;2023-05-22

4. Flickering Reduction with Partial Hypothesis Reranking for Streaming ASR;2022 IEEE Spoken Language Technology Workshop (SLT);2023-01-09

5. Research on the Effect of Flickering Speed on the Utility of Warning Incandescent Light;2023 IEEE International Conference on Consumer Electronics (ICCE);2023-01-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3