Distinguishing between straight and curved sounds: Auditory shape in pitch, loudness, and tempo gestures

Author:

Lembke Sven-AminORCID

Abstract

AbstractSound-based trajectories or sound gestures draw links to spatiokinetic processes. For instance, a gliding, decreasing pitch conveys an analogous downward motion or fall. Whereas the gesture’s pitch orientation and range convey its meaning and magnitude, respectively, the way in which pitch changes over time can be conceived of as gesture shape, which to date has rarely been studied in isolation. This article reports on an experiment that studied the perception of shape in uni-directional pitch, loudness, and tempo gestures, each assessed for four physical scalings. Gestures could increase or decrease over time and comprised different frequency and sound level ranges, durations, and different scaling contexts. Using a crossmodal-matching task, participants could reliably distinguish between pitch and loudness gestures and relate them to analogous visual line segments. Scalings based on equivalent-rectangular bandwidth (ERB) rate for pitch and raw signal amplitude for loudness were matched closest to a straight line, whereas other scalings led to perceptions of exponential or logarithmic curvatures. The investigated tempo gestures, by contrast, did not yield reliable differences. The reliable, robust perception of gesture shape for pitch and loudness has implications on various sound-design applications, especially those cases that rely on crossmodal mappings, e.g., visual analysis or control interfaces like audio waveforms or spectrograms. Given its perceptual relevance, auditory shape appears to be an integral part of sound gestures, while illustrating how crossmodal correspondences can underpin auditory perception.

Publisher

Springer Science and Business Media LLC

Subject

Linguistics and Language,Sensory Systems,Language and Linguistics,Experimental and Cognitive Psychology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3