Abstract
AbstractContemporary theories of attentional control state that information can be prioritized based on selection history. Even though theories agree that selection history can impact representations of spatial location, which in turn helps guide attention, there remains disagreement on whether nonspatial features (e.g., color) are modulated in a similar way. While previous work has demonstrated color suppression using visual search tasks, it is possible that the location corresponding to the distractor was suppressed, consistent with a spatial mechanism of suppression. Here, we sought to rule out this possibility by testing whether similar suppression of a learned distractor color can occur for spatially overlapping visual stimuli. On a given trial, two spatially superimposed stimuli (line arrays) were tilted either left or right of vertical and presented in one of four distinct colors. Subjects performed a speeded report of the orientation of the “target” array with the most lines. Critically, the distractor array was regularly one color, and this high-probability color was never the color of the target array, which encouraged learned suppression. In two experiments, responses to the target array were fastest when the distractor array was in the high-probability color, suggesting participants suppressed the distractor color. Additionally, when regularities were removed, the high-probability distractor color continued to benefit speeded target identification for individual subjects (E1) but slowed target identification (E2) when presented in the target array. Together, these results indicate that learned suppression of feature-based regularities modulates target detection performance independent of spatial location and persists over time.
Publisher
Springer Science and Business Media LLC
Subject
Linguistics and Language,Sensory Systems,Language and Linguistics,Experimental and Cognitive Psychology
Reference66 articles.
1. Awh, E., & Jonides, J. (2001). Overlapping mechanisms of attention and spatial working memory. Trends in Cognitive Sciences, 5(3), 119–126.
2. Awh, E., Belopolsky, A. V., & Theeuwes, J. (2012). Top-down versus bottom-up attentional control: A failed theoretical dichotomy. Trends in Cognitive Sciences, 16(8), 437–443.
3. Bahle, B., Beck, V. M., & Hollingworth, A. (2018). The architecture of interaction between visual working memory and visual attention. Journal of Experimental Psychology: Human Perception and Performance, 44(7), 992.
4. Bisley, J. W., & Goldberg, M. E. (2003). Neuronal activity in the lateral intraparietal area and spatial attention. Science, 299(5603), 81–86.
5. Bisley, J. W., & Goldberg, M. E. (2006). Neural correlates of attention and distractibility in the lateral intraparietal area. Journal of Neurophysiology, 95(3), 1696–1717. https://doi.org/10.1152/jn.00848.2005
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献