Object speed perception during lateral visual self-motion

Author:

Jörges BjörnORCID,Harris Laurence R.

Abstract

AbstractJudging object speed during observer self-motion requires disambiguating retinal stimulation from two sources: self-motion and object motion. According to the Flow Parsing hypothesis, observers estimate their own motion, then subtract the retinal corresponding motion from the total retinal stimulation and interpret the remaining stimulation as pertaining to object motion. Subtracting noisier self-motion information from retinal input should lead to a decrease in precision. Furthermore, when self-motion is only simulated visually, self-motion is likely to be underestimated, yielding an overestimation of target speed when target and observer move in opposite directions and an underestimation when they move in the same direction. We tested this hypothesis with a two-alternative forced-choice task in which participants judged which of two motions, presented in an immersive 3D environment, was faster. One motion interval contained a ball cloud whose speed was selected dynamically according to a PEST staircase, while the other contained one big target travelling laterally at a fixed speed. While viewing the big target, participants were either static or experienced visually simulated lateral self-motion in the same or opposite direction of the target. Participants were not significantly biased in either motion profile, and precision was only significantly lower when participants moved visually in the direction opposite to the target. We conclude that, when immersed in an ecologically valid 3D environment with rich self-motion cues, participants perceive an object’s speed accurately at a small precision cost, even when self-motion is simulated only visually.

Publisher

Springer Science and Business Media LLC

Subject

Linguistics and Language,Sensory Systems,Language and Linguistics,Experimental and Cognitive Psychology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3