Why do valence asymmetries emerge in value learning? A reinforcement learning account

Author:

Hao ChenxuORCID,Cabrera-Haro Lilian E.,Lin Ziyong,Reuter-Lorenz Patricia A.,Lewis Richard L.

Abstract

AbstractThe Value Learning Task (VLT; e.g., Raymond & O’Brien, 2009) is widely used to investigate how acquired value impacts how we perceive and process stimuli. The task consists of a series of trials in which participants attempt to maximize accumulated winnings as they make choices from a pair of presented images associated with probabilistic win, loss, or no-change outcomes. The probabilities and outcomes are initially unknown to the participant and thus the task involves decision making and learning under uncertainty. Despite the symmetric outcome structure for win and loss pairs, people learn win associations better than loss associations (Lin, Cabrera-Haro, & Reuter-Lorenz, 2020). This learning asymmetry could lead to differences when the stimuli are probed in subsequent tasks, compromising inferences about how acquired value affects downstream processing. We investigate the nature of the asymmetry using a standard error-driven reinforcement learning model with a softmax choice rule. Despite having no special role for valence, the model yields the learning asymmetry observed in human behavior, whether the model parameters are set to maximize empirical fit, or task payoff. The asymmetry arises from an interaction between a neutral initial value estimate and a choice policy that exploits while exploring, leading to more poorly discriminated value estimates for loss stimuli. We also show how differences in estimated individual learning rates help to explain individual differences in the observed win-loss asymmetries, and how the final value estimates produced by the model provide a simple account of a post-learning explicit value categorization task.

Funder

Friedrich-Alexander-Universität Erlangen-Nürnberg

Publisher

Springer Science and Business Media LLC

Subject

Behavioral Neuroscience,Cognitive Neuroscience

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Uncertainty in learning and decision-making: Introduction to the special issue;Cognitive, Affective, & Behavioral Neuroscience;2023-05-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3