Abstract
AbstractEmotion regulation is a core construct of mental health and deficits in emotion regulation abilities lead to psychological disorders. Reappraisal and suppression are two widely studied emotion regulation strategies but, possibly due to methodological limitations in previous studies, a consistent picture of the neural correlates related to the individual differences in their habitual use remains elusive. To address these issues, the present study applied a combination of unsupervised and supervised machine learning algorithms to the structural MRI scans of 128 individuals. First, unsupervised machine learning was used to separate the brain into naturally grouping grey matter circuits. Then, supervised machine learning was applied to predict individual differences in the use of different strategies of emotion regulation. Two predictive models, including structural brain features and psychological ones, were tested. Results showed that a temporo-parahippocampal-orbitofrontal network successfully predicted the individual differences in the use of reappraisal. Differently, insular and fronto-temporo-cerebellar networks successfully predicted suppression. In both predictive models, anxiety, the opposite strategy, and specific emotional intelligence factors played a role in predicting the use of reappraisal and suppression. This work provides new insights regarding the decoding of individual differences from structural features and other psychologically relevant variables while extending previous observations on the neural bases of emotion regulation strategies.
Funder
Università degli Studi di Trento
Publisher
Springer Science and Business Media LLC
Subject
Behavioral Neuroscience,Cognitive Neuroscience
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献