“Reliable organisms from unreliable components” revisited: the linear drift, linear infinitesimal variance model of decision making

Author:

Smith Philip L.ORCID

Abstract

AbstractDiffusion models of decision making, in which successive samples of noisy evidence are accumulated to decision criteria, provide a theoretical solution to von Neumann’s (1956) problem of how to increase the reliability of neural computation in the presence of noise. I introduce and evaluate a new neurally-inspired dual diffusion model, the linear drift, linear infinitesimal variance (LDLIV) model, which embodies three features often thought to characterize neural mechanisms of decision making. The accumulating evidence is intrinsically positively-valued, saturates at high intensities, and is accumulated for each alternative separately. I present explicit integral-equation predictions for the response time distribution and choice probabilities for the LDLIV model and compare its performance on two benchmark sets of data to three other models: the standard diffusion model and two dual diffusion model composed of racing Wiener processes, one between absorbing and reflecting boundaries and one with absorbing boundaries only. The LDLIV model and the standard diffusion model performed similarly to one another, although the standard diffusion model is more parsimonious, and both performed appreciably better than the other two dual diffusion models. I argue that accumulation of noisy evidence by a diffusion process and drift rate variability are both expressions of how the cognitive system solves von Neumann’s problem, by aggregating noisy representations over time and over elements of a neural population. I also argue that models that do not solve von Neumann’s problem do not address the main theoretical question that historically motivated research in this area.

Publisher

Springer Science and Business Media LLC

Subject

Developmental and Educational Psychology,Experimental and Cognitive Psychology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3