Author:
van Maanen Leendert,Miletić Steven
Abstract
AbstractThe rise of computational modeling in the past decade has led to a substantial increase in the number of papers that report parameter estimates of computational cognitive models. A common application of computational cognitive models is to quantify individual differences in behavior by estimating how these are expressed in differences in parameters. For these inferences to hold, models need to be identified, meaning that one set of parameters is most likely, given the behavior under consideration. For many models, model identification can be achieved up to a scaling constraint, which means that under the assumption that one parameter has a specific value, all remaining parameters are identified. In the current note, we argue that this scaling constraint implies a strong assumption about the cognitive process that the model is intended to explain, and warn against an overinterpretation of the associative relations found in this way. We will illustrate these points using signal detection theory, reinforcement learning models, and the linear ballistic accumulator model, and provide suggestions for a clearer interpretation of modeling results.
Publisher
Springer Science and Business Media LLC
Subject
Arts and Humanities (miscellaneous),Developmental and Educational Psychology,Experimental and Cognitive Psychology
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献