The Grievance Dictionary: Understanding threatening language use

Author:

van der Vegt Isabelle,Mozes Maximilian,Kleinberg Bennett,Gill Paul

Abstract

AbstractThis paper introduces the Grievance Dictionary, a psycholinguistic dictionary that can be used to automatically understand language use in the context of grievance-fueled violence threat assessment. We describe the development of the dictionary, which was informed by suggestions from experienced threat assessment practitioners. These suggestions and subsequent human and computational word list generation resulted in a dictionary of 20,502 words annotated by 2318 participants. The dictionary was validated by applying it to texts written by violent and non-violent individuals, showing strong evidence for a difference between populations in several dictionary categories. Further classification tasks showed promising performance, but future improvements are still needed. Finally, we provide instructions and suggestions for the use of the Grievance Dictionary by security professionals and (violence) researchers.

Funder

Horizon 2020 Framework Programme

Publisher

Springer Science and Business Media LLC

Subject

General Psychology,Psychology (miscellaneous),Arts and Humanities (miscellaneous),Developmental and Educational Psychology,Experimental and Cognitive Psychology

Reference57 articles.

1. Abbasi, A., & Chen, H. (2007). Affect intensity analysis of dark web forums. 2007 IEEE Intelligence and Security Informatics, 282–288. https://doi.org/10.1109/ISI.2007.379486

2. Akrami, N., Shrestha, A., Berggren, M., Kaati, L., Obaidi, M., & Cohen, K. (2018). Assessment of risk in written communication: Introducing the Profile Risk Assessment Tool (PRAT). EUROPOL. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-367346. Accessed 4 Dec 2019

3. Baele, S. J. (2017). Lone-actor terrorists’ emotions and cognition: An evaluation beyond stereotypes. Political Psychology, 38(3), 449–468. https://doi.org/10.1111/pops.12365

4. Benoit, K., Watanabe, K., Wang, H., Müller, S., Perry, P. O., Lauderdale, B., & Lowe, W. (2020). quanteda.textmodels: Scaling Models and Classifiers for Textual Data [R].

5. Benoit, K., Watanabe, K., Wang, H., Nulty, P., Obeng, A., Müller, S., & Matsuo, A. (2018). quanteda: An R package for the quantitative analysis of textual data. Journal of Open Source Software, 3(30), 774. https://doi.org/10.21105/joss.00774

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3