Putting the individual into reliability: Bayesian testing of homogeneous within-person variance in hierarchical models

Author:

Williams Donald R.ORCID,Martin Stephen R.,Rast Philippe

Abstract

AbstractMeasurement reliability is a fundamental concept in psychology. It is traditionally considered a stable property of a questionnaire, measurement device, or experimental task. Although intraclass correlation coefficients (ICC) are often used to assess reliability in repeated measure designs, their descriptive nature depends upon the assumption of a common within-person variance. This work focuses on the presumption that each individual is adequately described by the average within-person variance in hierarchical models. And thus whether reliability generalizes to the individual level, which leads directly into the notion of individually varying ICCs. In particular, we introduce a novel approach, using the Bayes factor, wherein a researcher can directly test for homogeneous within-person variance in hierarchical models. Additionally, we introduce a membership model that allows for classifying which (and how many) individuals belong to the common variance model. The utility of our methodology is demonstrated on cognitive inhibition tasks. We find that heterogeneous within-person variance is a defining feature of these tasks, and in one case, the ratio between the largest to smallest within-person variance exceeded 20. This translates into a tenfold difference in person-specific reliability! We also find that few individuals belong to the common variance model, and thus traditional reliability indices are potentially masking important individual variation. We discuss the implications of our findings and possible future directions. The methods are implemented in the R package vICC

Publisher

Springer Science and Business Media LLC

Subject

General Psychology,Psychology (miscellaneous),Arts and Humanities (miscellaneous),Developmental and Educational Psychology,Experimental and Cognitive Psychology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3