Abstract
AbstractIn longitudinal research, the development of some outcome variable(s) over time (or age) is studied. Such relations are not necessarily smooth, and piecewise growth models may be used to account for differential growth rates before and after a turning point in time. Such models have been well developed, but the literature on power analysis for these models is scarce. This study investigates the power needed to detect differential growth for linear–linear piecewise growth models in further detail while taking into account the possibility of attrition. Attrition is modeled using the Weibull survival function, which allows for increasing, decreasing or constant attrition across time. Furthermore, this work takes into account the realistic situation where subjects do not necessarily have the same turning point. A multilevel mixed model is used to model the relation between time and outcome, and to derive the relation between sample size and power. The required sample size to achieve a desired power is smallest when the turning points are located halfway through the study and when all subjects have the same turning point. Attrition has a diminishing effect on power, especially when the probability of attrition is largest at the beginning of the study. An example on alcohol use during middle and high school shows how to perform a power analysis. The methodology has been implemented in a Shiny app to facilitate power calculations for future studies.
Publisher
Springer Science and Business Media LLC
Subject
General Psychology,Psychology (miscellaneous),Arts and Humanities (miscellaneous),Developmental and Educational Psychology,Experimental and Cognitive Psychology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献