Smartphone sensor accuracy varies from device to device in mobile research: The case of spatial orientation

Author:

Kuhlmann TimORCID,Garaizar Pablo,Reips Ulf-Dietrich

Abstract

AbstractSmartphone usage is increasing around the globe—in daily life and as a research device in behavioral science. Smartphones offer the possibility to gather longitudinal data at little cost to researchers and participants. They provide the option to verify self-report data with data from sensors built into most smartphones. How accurate this sensor data is when gathered via different smartphone devices, e.g., in a typical experience sampling framework, has not been investigated systematically. With the present study, we investigated the accuracy of orientation data about the spatial position of smartphones via a newly invented measurement device, the RollPitcher. Objective status of pitch (vertical orientation) and roll (horizontal orientation) of the smartphone was compared to data gathered from the sensors via web browsers and native apps. Bayesian ANOVAs confirmed that the deviations in pitch and roll differed between smartphone models, with mean inaccuracies per device of up to 2.1° and 6.6°, respectively. The inaccuracies for measurements of roll were higher than for pitch, d = .28, p < .001. Our results confirm the presence of heterogeneities when gathering orientation data from different smartphone devices. In most cases, measurement via a web browser was identical to measurement via a native app, but this was not true for all smartphone devices. As a solution to lack of sensor accuracy, we recommend the development and implementation of a coherent research framework and also discuss the implications of the heterogeneities in orientation data for different research designs.

Funder

Universität Siegen

Publisher

Springer Science and Business Media LLC

Subject

General Psychology,Psychology (miscellaneous),Arts and Humanities (miscellaneous),Developmental and Educational Psychology,Experimental and Cognitive Psychology

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. AngleSizer: Enhancing Spatial Scale Perception for the Visually Impaired with an Interactive Smartphone Assistant;Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies;2024-08-22

2. Smartphone-Based IRI Estimation for Pavement Roughness Monitoring: A Data-Driven Approach;IEEE Internet of Things Journal;2024-06-01

3. Meta-analysis in a digitalized world: A step-by-step primer;Behavior Research Methods;2024-04-04

4. UniPreCIS: A data preprocessing solution for collocated services on shared IoT;Future Generation Computer Systems;2024-04

5. A low‐cost method for testing and analyzing the cervical range of motion;IET Science, Measurement & Technology;2024-03-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3