Non-parametric mixture modeling of cognitive psychological data: A new method to disentangle hidden strategies

Author:

Archambeau Kim,Couto Joaquina,Van Maanen Leendert

Abstract

AbstractIn a wide variety of cognitive domains, participants have access to several alternative strategies to perform a particular task and, on each trial, one specific strategy is selected and executed. Determining how many strategies are used by a participant as well as their identification at a trial level is a challenging problem for researchers. In the current paper, we propose a new method – the non-parametric mixture model – to efficiently disentangle hidden strategies in cognitive psychological data, based on observed response times. The developed method derived from standard hidden Markov modeling. Importantly, we used a model-free approach where a particular shape of a response time distribution does not need to be assumed. This has the considerable advantage of avoiding potentially unreliable results when an inappropriate response time distribution is assumed. Through three simulation studies and two applications to real data, we repeatedly demonstrated that the non-parametric mixture model is able to reliably recover hidden strategies present in the data as well as to accurately estimate the number of concurrent strategies. The results also showed that this new method is more efficient than a standard parametric approach. The non-parametric mixture model is therefore a useful statistical tool for strategy identification that can be applied in many areas of cognitive psychology. To this end, practical guidelines are provided for researchers wishing to apply the non-parametric mixture models on their own data set.

Publisher

Springer Science and Business Media LLC

Subject

General Psychology,Psychology (miscellaneous),Arts and Humanities (miscellaneous),Developmental and Educational Psychology,Experimental and Cognitive Psychology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3