Chatbot Language - crowdsource perceptions and reactions to dialogue systems to inform dialogue design decisions

Author:

Popp Birgit,Lalone Philip,Leschanowsky Anna

Abstract

AbstractConversational User Interfaces (CUI) are widely used, with about 1.8 billion users worldwide in 2020. For designing and building CUI, dialogue designers have to decide on how the CUI communicates with users and what dialogue strategies to pursue (e.g. reactive vs. proactive). Dialogue strategies can be evaluated in user tests by comparing user perceptions and reactions to different dialogue strategies. Simulating CUI and running them online, for example on crowdsourcing websites, is an attractive avenue to collecting user perceptions and reactions, as they can be gathered time- and cost-effectively. However, developing and deploying a CUI on a crowd sourcing platform can be laborious and requires technical proficiency from researchers. We present Chatbot Language (CBL) as a framework to quickly develop and deploy CUI on crowd sourcing platforms, without requiring a technical background. CBL is a library with specialized CUI functionality, which is based on the high-level language JavaScript. In addition, CBL provides scripts that use the API of the crowd sourcing platform Mechanical Turk (MT) in order to (a) create MT Human Intelligence Tasks (HITs) and (b) retrieve the results of those HITs. We used CBL to run experiments on MT and present a sample workflow as well as an example experiment. CBL is freely available and we discuss how CBL can be used now and may be further developed in the future.

Funder

German Federal Ministry for Economic Affairs and Energy

Fraunhofer-Institut für Integrierte Schaltungen IIS

Publisher

Springer Science and Business Media LLC

Subject

General Psychology,Psychology (miscellaneous),Arts and Humanities (miscellaneous),Developmental and Educational Psychology,Experimental and Cognitive Psychology

Reference43 articles.

1. Adamopoulou, E,. & Moussiades, L. (2020). An overview of chatbot technology. In: I. Maglogiannis, L, Iliadis, E, Pimenidis (Eds.) Artificial intelligence applications and innovations (pp. 373–383). Cham: Springer International Publishing

2. Amazon AWS (2017). Lex. https://aws.amazon.com/lex/

3. Amazon AWS (2020). Languages supported by amazon polly

4. Amazon Mechanical Turk (2020). Developer sandbox

5. AXA Group Operations Spain SA (2018). Nlp.js. https://www.npmjs.com/package/node-nlp

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3