Accuracy and precision of visual and auditory stimulus presentation in virtual reality in Python 2 and 3 environments for human behavior research

Author:

Tachibana RyoORCID,Matsumiya Kazumichi

Abstract

AbstractVirtual reality (VR) is a new methodology for behavioral studies. In such studies, the millisecond accuracy and precision of stimulus presentation are critical for data replicability. Recently, Python, which is a widely used programming language for scientific research, has contributed to reliable accuracy and precision in experimental control. However, little is known about whether modern VR environments have millisecond accuracy and precision for stimulus presentation, since most standard methods in laboratory studies are not optimized for VR environments. The purpose of this study was to systematically evaluate the accuracy and precision of visual and auditory stimuli generated in modern VR head-mounted displays (HMDs) from HTC and Oculus using Python 2 and 3. We used the newest Python tools for VR and Black Box Toolkit to measure the actual time lag and jitter. The results showed that there was an 18-ms time lag for visual stimulus in both HMDs. For the auditory stimulus, the time lag varied between 40 and 60 ms, depending on the HMD. The jitters of those time lags were 1 ms for visual stimulus and 4 ms for auditory stimulus, which are sufficiently low for general experiments. These time lags were robustly equal, even when auditory and visual stimuli were presented simultaneously. Interestingly, all results were perfectly consistent in both Python 2 and 3 environments. Thus, the present study will help establish a more reliable stimulus control for psychological and neuroscientific research controlled by Python environments.

Publisher

Springer Science and Business Media LLC

Subject

General Psychology,Psychology (miscellaneous),Arts and Humanities (miscellaneous),Developmental and Educational Psychology,Experimental and Cognitive Psychology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3