Automatic discovery and description of human planning strategies

Author:

Skirzyński JulianORCID,Jain Yash Raj,Lieder Falk

Abstract

AbstractScientific discovery concerns finding patterns in data and creating insightful hypotheses that explain these patterns. Traditionally, each step of this process required human ingenuity. But the galloping development of computer chips and advances in artificial intelligence (AI) make it increasingly more feasible to automate some parts of scientific discovery. Understanding human planning is one of the fields in which AI has not yet been utilized. State-of-the-art methods for discovering new planning strategies still rely on manual data analysis. Data about the process of human planning is often used to group similar behaviors together. Researchers then use this data to formulate verbal descriptions of the strategies which might underlie those groups of behaviors. In this work, we leverage AI to automate these two steps of scientific discovery. We introduce a method for automatic discovery and description of human planning strategies from process-tracing data collected with the Mouselab-MDP paradigm. Our method utilizes a new algorithm, called Human-Interpret, that performs imitation learning to describe sequences of planning operations in terms of a procedural formula and then translates that formula to natural language. We test our method on a benchmark data set that researchers have previously scrutinized manually. We find that the descriptions of human planning strategies that we obtain automatically are about as understandable as human-generated descriptions. They also cover a substantial proportion of relevant types of human planning strategies that had been discovered manually. Our method saves scientists’ time and effort, as all the reasoning about human planning is done automatically. This might make it feasible to more rapidly scale up the search for yet undiscovered cognitive strategies that people use for planning and decision-making to many new decision environments, populations, tasks, and domains. Given these results, we believe that the presented work may accelerate scientific discovery in psychology, and due to its generality, extend to problems from other fields.

Funder

Max Planck Institute for Intelligent Systems

Publisher

Springer Science and Business Media LLC

Subject

General Psychology,Psychology (miscellaneous),Arts and Humanities (miscellaneous),Developmental and Educational Psychology,Experimental and Cognitive Psychology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3