Author:
Dzubur Eldin,Ponnada Aditya,Nordgren Rachel,Yang Chih-Hsiang,Intille Stephen,Dunton Genevieve,Hedeker Donald
Abstract
AbstractThe use of intensive sampling methods, such as ecological momentary assessment (EMA), is increasingly prominent in medical research. However, inferences from such data are often limited to the subject-specific mean of the outcome and between-subject variance (i.e., random intercept), despite the capability to examine within-subject variance (i.e., random scale) and associations between covariates and subject-specific mean (i.e., random slope). MixWILD (Mixed model analysis With Intensive Longitudinal Data) is statistical software that tests the effects of subject-level parameters (variance and slope) of time-varying variables, specifically in the context of studies using intensive sampling methods, such as ecological momentary assessment. MixWILD combines estimation of a stage 1 mixed-effects location-scale (MELS) model, including estimation of the subject-specific random effects, with a subsequent stage 2 linear or binary/ordinal logistic regression in which values sampled from each subject’s random effect distributions can be used as regressors (and then the results are aggregated across replications). Computations within MixWILD were written in FORTRAN and use maximum likelihood estimation, utilizing both the expectation-maximization (EM) algorithm and a Newton–Raphson solution. The mean and variance of each individual’s random effects used in the sampling are estimated using empirical Bayes equations. This manuscript details the underlying procedures and provides examples illustrating standalone usage and features of MixWILD and its GUI. MixWILD is generalizable to a variety of data collection strategies (i.e., EMA, sensors) as a robust and reproducible method to test predictors of variability in level 1 outcomes and the associations between subject-level parameters (variances and slopes) and level 2 outcomes.
Publisher
Springer Science and Business Media LLC
Subject
General Psychology,Psychology (miscellaneous),Arts and Humanities (miscellaneous),Developmental and Educational Psychology,Experimental and Cognitive Psychology
Reference23 articles.
1. Bock, R. D. (1989). Measurement of human variation: A two-stage model. In R.D. Bock (Ed.) Multilevel analysis of educational data. New York: Academic Press.
2. Bolger, N., Davis, A., & Rafaeli, E. (2003). Diary methods: Capturing life as it is lived. Annual Review of Psychology, 54, 579–616.
3. Burbeck, S. (1992). Applications programming in smalltalk-80 (tm): How to use model-view-controller (mvc). Smalltalk-80, v2(5), 1–11.
4. Dimotakis, N., Ilies, R, & Judge, T. A. (2013). Experience sampling methodology. Modern research methods for the study of behavior in organizations pp 319–348.
5. Eid, M., & Diener, E. (1999). Intraindividual variability in affect: Reliability, validity, and personality correlates. Journal of Personality and Social Psychology, 76(4), 662.
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献