Automated facial expression measurement in a longitudinal sample of 4- and 8-month-olds: Baby FaceReader 9 and manual coding of affective expressions

Author:

Zaharieva Martina S.ORCID,Salvadori Eliala A.,Messinger Daniel S.,Visser Ingmar,Colonnesi Cristina

Abstract

AbstractFacial expressions are among the earliest behaviors infants use to express emotional states, and are crucial to preverbal social interaction. Manual coding of infant facial expressions, however, is laborious and poses limitations to replicability. Recent developments in computer vision have advanced automated facial expression analyses in adults, providing reproducible results at lower time investment. Baby FaceReader 9 is commercially available software for automated measurement of infant facial expressions, but has received little validation. We compared Baby FaceReader 9 output to manual micro-coding of positive, negative, or neutral facial expressions in a longitudinal dataset of 58 infants at 4 and 8 months of age during naturalistic face-to-face interactions with the mother, father, and an unfamiliar adult. Baby FaceReader 9’s global emotional valence formula yielded reasonable classification accuracy (AUC = .81) for discriminating manually coded positive from negative/neutral facial expressions; however, the discrimination of negative from neutral facial expressions was not reliable (AUC = .58). Automatically detected a priori action unit (AU) configurations for distinguishing positive from negative facial expressions based on existing literature were also not reliable. A parsimonious approach using only automatically detected smiling (AU12) yielded good performance for discriminating positive from negative/neutral facial expressions (AUC = .86). Likewise, automatically detected brow lowering (AU3+AU4) reliably distinguished neutral from negative facial expressions (AUC = .79). These results provide initial support for the use of selected automatically detected individual facial actions to index positive and negative affect in young infants, but shed doubt on the accuracy of complex a priori formulas.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3