Author:
Hsiao Janet H.,Lan Hui,Zheng Yueyuan,Chan Antoni B.
Abstract
AbstractThe eye movement analysis with hidden Markov models (EMHMM) method provides quantitative measures of individual differences in eye-movement pattern. However, it is limited to tasks where stimuli have the same feature layout (e.g., faces). Here we proposed to combine EMHMM with the data mining technique co-clustering to discover participant groups with consistent eye-movement patterns across stimuli for tasks involving stimuli with different feature layouts. Through applying this method to eye movements in scene perception, we discovered explorative (switching between the foreground and background information or different regions of interest) and focused (mainly looking at the foreground with less switching) eye-movement patterns among Asian participants. Higher similarity to the explorative pattern predicted better foreground object recognition performance, whereas higher similarity to the focused pattern was associated with better feature integration in the flanker task. These results have important implications for using eye tracking as a window into individual differences in cognitive abilities and styles. Thus, EMHMM with co-clustering provides quantitative assessments on eye-movement patterns across stimuli and tasks. It can be applied to many other real-life visual tasks, making a significant impact on the use of eye tracking to study cognitive behavior across disciplines.
Publisher
Springer Science and Business Media LLC
Subject
General Psychology,Psychology (miscellaneous),Arts and Humanities (miscellaneous),Developmental and Educational Psychology,Experimental and Cognitive Psychology
Reference63 articles.
1. An, J. H., & Hsiao, J. H. (in press). Modulation of Mood on Eye Movement Pattern and Performance in Face Recognition. Emotion.
2. Aminoff, E. M., & Tarr, M. J. (2015). Associative Processing Is Inherent in Scene Perception. Plos One, 10(6).
3. Barton, J. J. S., Radcliffe, N., Cherkasova, M. V., Edelman, J., & Intriligator, J. M. (2006). Information processing during face recognition: the effects of familiarity, inversion, and morphing on scanning fixations. Perception, 35, 1089–1105.
4. Bishop, C. M. (2006) Pattern recognition and machine learning. Springer.
5. Blais, C., Jack, R. E., Scheepers, C., Fiset, D., & Caldara, R. (2008). Culture shapes how we look at faces. PLoS One, 3(8), e3022.
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献