Comparing methods of category learning: Classification versus feature inference

Author:

Morgan Emma L.,Johansen Mark K.

Abstract

AbstractCategories have at least two main functions: classification of instances and feature inference. Classification involves assigning an instance to a category, and feature inference involves predicting a feature for a category instance. Correspondingly, categories can be learned in two distinct ways, by classification and feature inference. A typical difference between these in the perceptual category learning paradigm is the presence of the category label as part of the stimulus in feature inference learning and not in classification learning. So we hypothesized a label-induced rule-bias in feature inference learning compared to classification and evaluated it on an important starting point in the field for category learning – the category structures from Shepard, Hovland, and Jenkins (Psychological Monographs: General and Applied, 75(13), 1-42, 1961). They classically found that classification learning of structures consistent with more complex rules resulted in poorer learning. We compared feature inference learning of these structures with classification learning and found differences between the learning tasks supporting the label-bias hypothesis in terms of an emphasis on label-based rules in feature inference. Importantly, participants’ self-reported rules were largely consistent with their task performance and indicated the preponderance of rule representation in both tasks. So, while the results do not support a difference in the kind of representation for the two learning tasks, the presence of category labels in feature inference tended to focus rule formation. The results also highlight the specialized nature of the classic Shepard et al. (1961) stimuli in terms of being especially conducive to the formation of compact verbal rules.

Funder

Cardiff University

Publisher

Springer Science and Business Media LLC

Subject

Arts and Humanities (miscellaneous),Experimental and Cognitive Psychology,Neuropsychology and Physiological Psychology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3