Author:
Bhatia Divya,Mohite Vaishnavi,Spataro Pietro,Rossi-Arnaud Clelia,Mishra Ramesh Kumar
Abstract
AbstractPrevious studies showed that (a) performing pointing movements towards to-be-remembered locations enhanced their later recognition, and (b) in a joint-action condition, experimenter-performed pointing movements benefited memory to the same extent as self-performed movements. The present study replicated these findings and additionally recorded participants’ fixations towards studied arrays. Each trial involved the presentation of two consecutive spatial arrays, where each item occupied a different spatial location. The item locations of one array were encoded by mere visual observation (the no-move array), whereas the locations of the other array were encoded by observation plus pointing movements (the move array). Critically, in Experiment 1, participants took turns with the experimenter in pointing towards the move arrays (joint-action condition), while in Experiment 2 pointing was performed only by the experimenter (passive condition). The results showed that the locations of move arrays were recognized better than the locations of no-move arrays in Experiment 1, but not in Experiment 2. The pattern of eye-fixations was in line with behavioral findings, indicating that in Experiment 1, fixations to the locations of move arrays were higher in number and longer in duration than fixations to the locations of no-move arrays, irrespective of the agent who performed the movements. In contrast, no differences emerged in Experiment 2. We propose that, in the joint-action condition, self- and other-performed pointing movements are coded at the same representational level and their functional equivalency is reflected in a similar pattern of eye-fixations.
Funder
Sapienza Università di Roma
Publisher
Springer Science and Business Media LLC
Subject
Arts and Humanities (miscellaneous),Experimental and Cognitive Psychology,Neuropsychology and Physiological Psychology
Reference86 articles.
1. Atmaca, S., Sebanz, N., & Knoblich, G. (2011). The joint flanker effect: Sharing tasks with real and imagined co-actors. Experimental Brain Research, 211 (3-4), 371-385.
2. Atmaca, S., Sebanz, N., Prinz, W., & Knoblich, G. (2008). Action co-representation: The joint SNARC effect. Social Neuroscience, 3 (3-4), 410-420.
3. Baddeley, A. (2012). Working memory: Theories, models, and controversies. Annual Review of Psychology, 63, 1-29.
4. Baddeley, A. D., & Hitch, G. (1974). Working memory. In G.H. Bower (Ed.), Psychology of learning and motivation (Vol. 8, pp. 47-89). Academic Press.
5. Baddeley, A. D., & Lieberman, K. (1980). Spatial working memory. In R. S. Nickerson (Ed.), Attention and performance VIII (pp. 521–539). Erlbaum.