Novel K-Nearest Neighbor With Convolutional Neural Networks (KNN-CNN) For Accurate Brain Tumor Detection In Image Mining

Author:

R. Sasikala, Dr. S. P. Swornambiga

Abstract

Brain tumor classification plays a crucial role in early diagnosis and effective treatment planning. In this paper, we propose a novel approach, K-Nearest Neighbor with Convolutional Neural Networks (KNN-CNN), for accurate brain tumor classification. The proposed method combines the strengths of K-Nearest Neighbor (KNN) and Convolutional Neural Networks (CNNs) to leverage both traditional feature-based classification and deep learning-based feature extraction. We use CNNs to learn high-level features from brain tumor images, and KNN is employed to classify tumors based on the extracted features. The experimental results on a brain tumor dataset demonstrate the effectiveness and efficiency of the KNN-CNN approach, achieving high classification accuracy and outperforming traditional methods.

Publisher

Science Research Society

Subject

Aerospace Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. From Field to Data: A Machine Learning Approach to Classifying Celery Varieties;2024 International Conference on Electronics, Computing, Communication and Control Technology (ICECCC);2024-05-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3