Enhancing Software Defect Prediction accuracy using Modified Entropy Calculation in Random Forest Algorithm

Author:

Suryawanshi,Amol Kadam Ranjeetsingh,

Abstract

Imagine you are trying to classify software defect for a large dataset. How will you choose the best algorithm to do that? For the above problem we have various algorithms like Random Forest, Support Vector Machine, Neural Networks, Naive Bayes, K-Nearest Neighbours, Decision Tree, Logistic Regression etc. One of the most used methods is Random Forest algorithm, which uses multiple Decision Trees to make predictions. However, this algorithm relies on a complex calculation called Entropy, which measures the uncertainty in the data. Entropy is a function that uses natural logarithm which may be time consuming calculation. Is there a better way to calculate entropy? In this research, we have explored a different way to calculate the natural logarithm using the Taylor series expression. It is a series consisting of sum of infinite terms that approximates any function by using its derivatives. We further modified the Random Forest algorithm by replacing the natural logarithm with the Taylor series expression in the Entropy formula. We tested our modified algorithm on dataset and compared its performance with the original Entropy formula. We found that our modification in the algorithm has improved the accuracy of the algorithm on software defect prediction

Publisher

Science Research Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3