Computational Modeling of Damage Progression in Unreinforced Masonry Walls via DEM

Author:

PULATSU Bora1ORCID,TUNCAY Kağan2ORCID

Affiliation:

1. Carleton University

2. MIDDLE EAST TECHNICAL UNIVERSITY

Abstract

Unreinforced masonry (URM) walls are the common load-bearing elements for old masonry buildings and heritage structures. As witnessed from the past and recent earthquakes, URM walls may demonstrate various collapse mechanisms along with different crack patterns influenced by the wall aspect ratio, vertical pre-compression load, opening size and ratio, among many other factors. Typically, the mortar joints and unit-mortar interfaces are the weak planes where we expect to observe most failures, such as sliding, cracking and joint opening. However, it is not a straightforward task to simulate the structural behaviour and the failure mechanism of URM walls, including the crack localizations and propagation through the mortar joints, using the standard continuum-based computational models given the composite and highly nonlinear nature of the material. In this context, the present research offers a discontinuum-based approach to simulate the damage progression in URM walls subjected to combined shear-compression loading using the discrete element method (DEM). The masonry walls are represented via distinct elastic blocks interacting through point contacts to their surroundings. It is aimed to present the effect of the local fracture mechanism on the macro response of the masonry walls via validated DEM-based numerical models that can address all possible fracture mechanisms occurring at the unit-mortar interfaces. An innovative damage monitoring technique relying on the stress state at the point contacts is implemented and utilized to explore the associated damage progression in URM walls. The results show the great potential of the adopted modelling strategy to better understand the mechanics of URM walls and indicate the effect of strength properties of masonry constituents on the overall in-plane capacity of the load-bearing walls.

Publisher

Teknik Dergi

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3