Seismic Responses of an Isolated Long-span Bridge using Frequency Domain and Time Dependent Procedures

Author:

SARITAŞ Fevzi1ORCID,HASGÜR Zeki2ORCID

Affiliation:

1. Darmstadt Technical University

2. ALTINBAŞ ÜNİVERSİTESİ

Abstract

Seismic behavior of an isolated bridge is analyzed in the frequency domain under the effects of nonstationary ground motions. For dynamic solutions, different ground environments are considered by simulating nonstationary quakes that can be represented from bedrock to soft ground level. In the simulations, power spectral functions and filtered white noise model are adopted for spectral densities of the earthquake excitations. Various computer algorithms have been developed for earthquake simulations, establishing the bridge finite element model and stochastic solutions. Twenty simulated ground motions are used for each soil profile and the parameters of Rayleigh dispersion are estimated by evaluating the system responses for each ensemble. A number of peak response factors dependent on soil conditions are presented for seismic responses. In addition, extreme value distributions of the responses are shown with the probability of exceeding functions and tables. The responses are discussed for the specific exceedance level of probabilities used in probabilistic design process. The stochastic analyses generally yielded responses consistent with time domain solutions. Exceedance probability functions of the peak responses were obtained in a close relationship. However, the probability distributions of the responses decomposed for the soft soil case and they displayed a wider dispersion even for low exceedance levels. The peak responses are expressed with some exceedance probabilities. In the estimation of response variations, this study showed the practicality of the frequency domain method and the results revealed higher peak response factors and variances for softer soil conditions. Furthermore, this study indicated that the frequency domain procedure is an effective tool in the obtaining of nonstationary seismic responses.

Publisher

Teknik Dergi

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3