Modeling of Asphalt Pavement Surface Temperature for Prevention of Icing on the Surface

Author:

AKBULUT Hüseyin1ORCID,ATILGAN GEVREK Lale2ORCID,AY Murat3ORCID

Affiliation:

1. AFYON KOCATEPE UNIVERSITY, FACULTY OF ENGINEERING

2. YOZGAT BOZOK UNIVERSITY, VOCATIONAL SCHOOL

3. YOZGAT BOZOK UNIVERSITY, FACULTY OF ENGINEERING-ARCHITECTURE

Abstract

Hydronic heating systems are emerging as one of the best methods, which are environmentally friendly, clean, and sustainable modern ice prevention methods, an alternative to traditional ice precautions in the pavements. In this present study, temperatures were measured on asphalt samples prepared using the hydronic heating system when the air temperature in situ fell below 0 °C. T(minute), the temperature of influent (°C), air temperature (°C), temperature of effluent (°C) and pavement mean temperature (°C) were measured for four different asphalt samples. The results of the measurements were then modeled separately for four samples (345×4=1380 data) by using multiple linear regression (MLR), multi-layer perceptron (MLP), and radial basis neural network (RBNN). The results were discussed as tables and graphs. The performances of the models were evaluated using the root mean square error (RMSE), mean absolute error (MAE), and determination coefficient (R2). According to the results, the RBNN models of four inputs had the best performance for each sample. The RBNN (4,0.6,9) model, which refers to 4-inputs, spread coefficient of 0.6 and hidden nodes of 9, of sample-3 with RMSE=0.76 °C and MAE=0.63 °C and R2=0.91 had the best performance among all models. In addition, it is thought that the models having low errors in this concept can be evaluated for early warning systems for the ice condition of the roads.

Funder

Afyon Kocatepe University

Publisher

Teknik Dergi

Reference39 articles.

1. Fay, L., Volkening, K., Gallaway, C., Shi, X., Performance and Impacts of Current Deicing and Anti-Icing Products: User Perspective versus Experimental Data. Presented at 87th Annual Meeting of the Transportation Research Board, Washington DC., 08-1382, 2008.

2. Houssain, SMK., Optimum De-Icing and Anti-Icing for Snow and Ice Control of Parking Lots and Sidewalks. PhD thesis in Civil Engineering. The University of Waterloo, 186, Canada, 2014.

3. Adl-Zarrabi, B., Mirzanamadi, R., Jhonsson, J., Hydronic Pavement Heating for Sustainable Ice-free Roads. Transportation Research Procedia, 14, 704-713, 2016.

4. Akbulut, H., Woodside, AR., Traffic Safety and Unprotected Road Users in Low and Middle Income Countries. Journal of Innovations in Civil Engineering and Technology, 1(1), 1-9, 2019.

5. Blomqvist, S. Amiri, S. Rohdin, P. Ödlund, L., Analyzing the Performance and Control of a Hydronic Pavement System in a District Heating Network. Energies, 12(11), 2078, 2019.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3