Affiliation:
1. YILDIZ TEKNİK ÜNİVERSİTESİ
2. ISTANBUL TECHNICAL UNIVERSITY
Abstract
In the present work, an alternative solution technique based on mixed finite element (MFE) formulation in the Laplace-Carson domain is proposed for quasi-static and dynamic analyses of viscoelastic plate (VEP) resting on an elastic foundation (EF). This work contributed a numerical solution to the problem of a viscoelastic Kirchhoff plate supported on a Winkler foundation. VEP-EF interaction problems are taken into account under different wave-type loadings. The viscoelastic material behavior of the plate is modeled by the Zener rheological solid model. A four-nodded linear isoparametric element containing sixteen degrees of freedom is used to model the VEP. Developed functional in the Laplace-Carson domain based on the Gâteaux differential method is transformed to the real time domain by utilizing the Dubner and Abate (D&A) inverse Laplace transform technique (ILTT). To evaluate the applicability of the results, five numerical samples are considered. Further analyzes are performed on different wave type loadings to offer a new perspective on the time-dependent behavior of VEP on EF.
Reference45 articles.
1. Pasternak, P.L.: On a New Method of Analysis of an Elastic Foundation by Means of Two Foundation Constants. Gosstroyizdat, Moscow (1954).
2. Vlasov, V.Z., Leontiev, U.N.: Beams, Plates, and Shells on Elastic Foundations. Israel Program for Scientific Translations, Jerusalem (translated from Russian) (1966).
3. Wang, Y.H., Tham, L.G., Cheung, Y.K.: Beams and plates on elastic foundations: a review. Prog. Struct. Eng. Mater. 7:174-182 (2005) https://doi.org/10.1002/pse.202.
4. Kerr, A.D.: Elastic and viscoelastic foundation models. J. Appl. Mech. 31:491-498 (1964) https://doi.org/10.1115/1.3629667.
5. Cheung, Y.K., Zienkiewicz, O.C.: Plates and tanks on elastic foundations-an application of finite element method. Int. J. Solids Struct. 1:451- 461 (1965) https://doi.org/10.1016/0020-7683(65)90008-9.