A Conceptual Framework for Machine Self-Presentation and Trust

Author:

Stanley Jeff1,Eris Ozgur1,Lohani Monika2

Affiliation:

1. The MITRE Corporation at 7525 Colshire Dr, McLean, VA, USA

2. The University of Utah at 201 Presidents' Cir, Salt Lake City, UT, USA

Abstract

Increasingly, researchers are creating machines with humanlike social behaviors to elicit desired human responses such as trust and engagement, but a systematic characterization and categorization of such behaviors and their demonstrated effects is missing. This paper proposes a taxonomy of machine behavior based on what has been experimented with and documented in the literature to date. We argue that self-presentation theory, a psychosocial model of human interaction, provides a principled framework to structure existing knowledge in this domain and guide future research and development. We leverage a foundational human self-presentation taxonomy (Jones and Pittman, 1982), which associates human verbal behaviors with strategies, to guide the literature review of human-machine interaction studies we present in this paper. In our review, we identified 36 studies that have examined human-machine interactions with behaviors corresponding to strategies from the taxonomy. We analyzed frequently and infrequently used strategies to identify patterns and gaps, which led to the adaptation of Jones and Pittman’s human self-presentation taxonomy to a machine self-presentation taxonomy. The adapted taxonomy identifies strategies and behaviors machines can employ when presenting themselves to humans in order to elicit desired human responses and attitudes. Drawing from models of human trust we discuss how to apply the taxonomy to affect perceived machine trustworthiness.

Publisher

Institute for Semantic Computing Foundation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The blame shift: Robot service failures hold service firms more accountable;Journal of Business Research;2024-01

2. Personality for Virtual Assistants: A Self-Presentation Approach;Advanced Virtual Assistants - A Window to the Virtual Future [Working Title];2023-06-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3