Author:
Rao C. Radhakrishna,Shanbhag D. N.
Abstract
The problem of identifying solutions of general convolution equations relative to a group has been studied in two classical papers by Choquet and Deny (1960) and Deny (1961). Recently, Lau and Rao (1982) have considered the analogous problem relative to a certain semigroup of the real line, which extends the results of Marsaglia and Tubilla (1975) and a lemma of Shanbhag (1977). The extended versions of Deny&s theorem contained in the papers by Lau and Rao, and Shanbhag (which we refer to as LRS theorems) yield as special cases improved versions of several characterizations of exponential, Weibull, stable, Pareto, geometric, Poisson and negative binomial distributions obtained by various authors during the last few years. In this paper we review some of the recent contributions to characterization of probability distributions (whose authors do not seem to be aware of LRS theorems or special cases existing earlier) and show how improved versions of these results follow as immediate corollaries to LRS theorems. We also give a short proof of Lau–Rao theorem based on Deny&s theorem and thus establish a direct link between the results of Deny (1961) and those of Lau and Rao (1982). A variant of Lau–Rao theorem is proved and applied to some characterization problems.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,Statistics and Probability
Reference33 articles.
1. Wolinska-Welcz A. and Szynal D. (1984) On a solution of Dugué&s problem for a class of couples of lattice distributions. Unpublished.
2. Letter to the editor
3. On Some Characterizations of the Binomial and Poisson Distributions Based on a Damage Model
Cited by
58 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献