Abstract
A linear time-series model is considered to be one for which a stationary time series, which is purely non-deterministic, has the best linear predictor equal to the best predictor. A general inferential theory is constructed for such models and various estimation procedures are shown to be equivalent. The treatment is considerably more general than previous treatments. The case where the series has mean which is a linear function of very general kinds of regressor variables is also discussed and a rather general form of central limit theorem for regression is proved. The central limit results depend upon forms of the central limit theorem for martingales.
Publisher
Cambridge University Press (CUP)
Subject
Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability
Cited by
312 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献