Abstract
Motivated by applications in digital image processing, we discuss information-theoretic bounds to the amount of detail that can be recovered from a defocused, noisy signal. Mathematical models are constructed for test-pattern, defocusing and noise. Using these models, upper bounds are derived for the amount of detail that can be recovered from the degraded signal, using any method of image restoration. The bounds are used to assess the performance of the class of linear restorative procedures. Certain members of the class are shown to be optimal, in the sense that they attain the bounds, while others are shown to be sub-optimal. The effect of smoothness of point-spread function on the amount of resolvable detail is discussed concisely.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,Statistics and Probability
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献