Abstract
The use of taboo probabilities in Markov chains simplifies the task of calculating the queue-length distribution from data recording customer departure times and service commencement times such as might be available from automatic bank-teller machine transaction records or the output of telecommunication network nodes. For the case of Poisson arrivals, this permits the construction of a new simple exact O(n3) algorithm for busy periods with n customers and an O(n2 log n) algorithm which is empirically verified to be within any prespecified accuracy of the exact algorithm. The algorithm is extended to the case of Erlang-k interarrival times, and can also cope with finite buffers and the real-time estimates problem when the arrival rate is known.
Publisher
Cambridge University Press (CUP)
Subject
Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献