On forcing without the continuum hypothesis

Author:

Abraham Uri

Abstract

2. One of the first examples of the forcing method is cardinal collapsing (A. Levy, see [5]), for example, collapsing ℵ2 to ℵ1: the poset P is the collection of all countable functions from a countable ordinal into ℵ2. As is well known, in VP, , and because P is closed under union of countable chains, remains a cardinal and, in fact, no new countable sets are added. But to prove that remains a cardinal we need to conclude ∣P∣ ≤ ℵ2 and hence ℵ3 is not collapsed. If it has been observed that is actually collapsed in VP. Hence the following theorem, which makes no assumptions on the continuum, is relevant.1. Theorem. There is a poset R such that in VR2 becomes of cardinality ℵ1, but ℵ1 and the cardinals above ℵ2 are not collapsed.

Publisher

Cambridge University Press (CUP)

Subject

Logic,Philosophy

Reference6 articles.

1. Abraham U. , On the intersection of closed unbounded sets (in preparation).

2. Saturation properties of ideals in generic extensions. I

3. Isomorphism types of Aronszajn trees;Abraham;Israel Journal of Mathematics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3