Abstract
Apologies. The purpose of the following talk is to give an overview of the present state of aims, methods and results in Pure Proof Theory. Shortage of time forces me to concentrate on my very personal views. This entails that I will emphasize the work which I know best, i.e., work that has been done in the triangle Stanford, Munich and Münster. I am of course well aware that there are as important results coming from outside this triangle and I apologize for not displaying these results as well.Moreover the audience should be aware that in some points I have to oversimplify matters. Those who complain about that are invited to consult the original papers.1.1. General. Proof theory startedwithHilbert's Programme which aimed at a finitistic consistency proof for mathematics.By Gödel's Theorems, however, we know that we can neither formalize all mathematics nor even prove the consistency of formalized fragments by finitistic means. Inspite of this fact I want to give some reasons why I consider proof theory in the style of Gentzen's work still as an important and exciting field of Mathematical Logic. I will not go into applications of Gentzen's cut-elimination technique to computer science problems—this may be considered as applied proof theory—but want to concentrate on metamathematical problems and results. In this sense I am talking about Pure Proof Theory.Mathematicians are interested in structures. There is only one way to find the theorems of a structure. Start with an axiom system for the structure and deduce the theorems logically. These axiom systems are the objects of proof-theoretical research. Studying axiom systems there is a series of more or less obvious questions.
Publisher
Cambridge University Press (CUP)
Reference27 articles.
1. [17] Rathjen M. , Untersuchungen zu Teilsystemen der Zahlentheorie zweiter Stufe und der Mengenlehre mit einer zwischen ( -CA) und ( -CA) + (BI) liegenden Beweisstärke, Ph.D. thesis, Münster, 1989.
2. Collapsing functions based on recursively large ordinals: A well-ordering proof for KPM
3. Cut elimination for impredicative infinitary systems, Part I;Pohlers;Archive for Mathematical Logic,1981
4. A well-ordering proof for Fefermans theory T0;Jäger;Archive for Mathematical Logic,1983
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献