Author:
Rubin Matatyahu,Shelah Saharon
Abstract
AbstractWe prove that the logics of Magidor-Malitz and their generalization by Rubin are distinct even for PC classes.Let M ⊨ Qnx1 … xnφ(x1 … xn) mean that there is an uncountable subset A of ∣M∣ such that for every a1 …, an ∈ A, M ⊨ φ[a1, …, an].Theorem 1.1 (Shelah) (♢ℵ1). For every n ∈ ωthe classKn+1 = {‹A, R› ∣ ‹A, R› ⊨ ¬ Qn+1x1 … xn+1R(x1, …, xn+1)} is not an ℵ0-PC-class in the logic ℒn, obtained by closing first order logic underQ1, …, Qn. I.e. for no countable ℒn-theory T, isKn+1the class of reducts of the models of T.Theorem 1.2 (Rubin) (♢ℵ1). Let M ⊨ QE x yφ(x, y) mean that there is A ⊆ ∣M∣ such thatEA, φ = {‹a, b› ∣ a, b ∈ A and M ⊨ φ[a, b]) is an equivalence relation on A with uncountably many equivalence classes, and such that each equivalence class is uncountable. Let KE = {‹A, R› ∣ ‹A, R› ⊨ ¬ QExyR(x, y)}. Then KE is not an ℵ0-PC-class in the logic gotten by closing first order logic under the set of quantifiers {Qn ∣ n ∈ ω) which were defined in Theorem 1.1.
Publisher
Cambridge University Press (CUP)
Reference11 articles.
1. Maximal models in the language with quantifier “there exist uncountably many”
2. Rubin M. and Shelah S. , Combinatorial problems on trees. Partitions, ⊿-systems and large free subsets, Annals of Mathematical Logic (to appear).
3. Proof of a conjecture of B. Ruziewicz
4. Kunen K. and Tall F.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献