Morasses and the Lévy-collapse

Author:

Komjáth P.

Abstract

For several old problems in combinatorial set theory A. Hajnal and the present author [2] showed that on collapsing a sufficiently Mahlo cardinal to ω1 by the Lévy-collapse one gets a model where these problems are solved in the “counter-example” direction. The authors of [2] have speculated that the theorems of that paper should hold in L, and this, in fact, was shown for some of the results by Todorčević and Velleman [7,8]. The observation that collapsing a large cardinal to ω1 may give rise to L-like constructions is not new. As it was shown long ago by Silver and Rowbottom, there is a Kurepa-tree if a strongly inaccessible cardinal is Lévy-collapsed to ω1. In [5] it is proved that even Silver's W holds in that model. Here we show that even a quagmire exists there, but not necessarily a morass. To be more exact, we show that if κ < λ are the first two strongly inaccessible cardinals, first λ is Lévy-collapsed to κ+, and then κ is Lévy-collapsed to then there is no ω1-morass with built-in diamond in the resulting model (GCH is assumed). If λ is Mahlo, there is not even a morass.Our notations are standard. For excellent survey papers on morass-like principles and their uses in combinatorial set theory see [4,5,6].

Publisher

Cambridge University Press (CUP)

Subject

Logic,Philosophy

Reference10 articles.

1. Aronszajn trees and partitions

2. The fine structure of the constructible hierarchy

3. Hajnal A. and Komjáth P. , Some higher-gap examples in combinatorial set theory, Annals of Pure and Applied Logic (to appear).

4. A new class of order types

5. Morasses, diamond, and forcing

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Can you take Komjath's inaccessible away?;Annals of Pure and Applied Logic;2024-07

2. Specializing trees and answer to a question of Williams;Journal of Mathematical Logic;2020-06-13

3. On constructions with 2-cardinals;Archive for Mathematical Logic;2017-05-15

4. Kurepa trees and topological non-reflection;Topology and its Applications;2005-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3