Decision problems concerning properties of finite sets of equations

Author:

Kalfa Cornelia

Abstract

In this paper a general method of proving the undecidability of a property P, for finite sets Σ of equations of a countable algebraic language, is presented. The method is subsequently applied to establish the undecidability of the following properties, in almost all nontrivial such languages:1. The first-order theory generated by the infinite models of Σ is complete.2. The first-order theory generated by the infinite models of Σ is model-complete.3. Σ has the joint-embedding property.4. The first-order theory generated by the models of Σ with more than one element has the joint-embedding property.5. The first-order theory generated by the infinite models of Σ has the joint-embedding property.A countable algebraic language ℒ is a first-order language with equality, with countably many nonlogical symbols but without relation symbols, ℒ is trivial if it has at most one operation symbol, and this is of rank one. Otherwise, ℒ is nontrivial. An ℒ-equation is a sentence of the form , where φ and ψ are ℒ-terms. The set of ℒ-equations is denoted by Eq. A set of sentences is said to have the joint-embedding property if any two models of it are embeddable in a third model of it.If P is a property of sets of ℒ-equations, the decision problem of P for finite sets of ℒ-equations is the problem of the existence or not of an algorithm for deciding whether, given a finite Σ ⊂ Eq, Σ has P or not.

Publisher

Cambridge University Press (CUP)

Subject

Logic,Philosophy

Reference14 articles.

1. Undecidable properties of finite sets of equations;Kalfa;Notices of the American Mathematical Society,1979

2. Nondiscernible properties of finite systems of identity relations;Murskiǐ;Doklady Akadémii Nauk SSSR,1971

3. Kalfa C. , Decision problems concerning sets of equations, Ph.D. thesis, Bedford College, University of London, London, 1980.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A field guide to equational logic;Journal of Symbolic Computation;1992-10

2. An equational logic sampler;Rewriting Techniques and Applications;1989

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3