Abstract
Given a d-dimensional random field and a Poisson process independent of it, suppose that it is possible to observe only the location of each point of the Poisson process and the value of the random field at that (randomly located) point. Non-parametric estimators of the mean and covariance function of the random field—based on observation over compact sets of single realizations of the Poisson samples—are constructed. Under fairly mild conditions these estimators are consistent (in various senses) as the set of observation becomes unbounded in a suitable manner. The state estimation problem of minimum mean-squared error reconstruction of unobserved values of the random field is also examined.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,Statistics and Probability
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献