Abstract
If X = (X1, · ··, Xn) has uniform distribution on the sphere or ball in ℝ with radius a, then the joint distribution of , ···, k, converges in total variation to the standard normal distribution on ℝ. Similar results hold for the inner products of independent n-vectors. Applications to geometric probability are given.
Publisher
Cambridge University Press (CUP)
Subject
Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability
Cited by
64 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献