The joint distribution of sojourn times in finite Markov processes

Author:

Csenki Attila

Abstract

Rubino and Sericola (1989c) derived expressions for the mth sojourn time distribution associated with a subset of the state space of a homogeneous irreducible Markov chain for both the discrete- and continuous-parameter cases. In the present paper, it is shown that a suitable probabilistic reasoning using absorbing Markov chains can be used to obtain respectively the probability mass function and the cumulative distribution function of the joint distribution of the first m sojourn times. A concise derivation of the continuous-time result is achieved by deducing it from the discrete-time formulation by time discretization. Generalizing some further recent results by Rubino and Sericola (1991), the joint distribution of sojourn times for absorbing Markov chains is also derived. As a numerical example, the model of a fault-tolerant multiprocessor system is considered.

Publisher

Cambridge University Press (CUP)

Subject

Applied Mathematics,Statistics and Probability

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Resilience modeling for multi-state systems based on Markov processes;Reliability Engineering & System Safety;2023-07

2. Generalized phase-type distributions based on multi-state systems;IISE Transactions;2019-05-13

3. A performance measure for Markov system with stochastic supply patterns and stochastic demand patterns;Reliability Engineering & System Safety;2013-11

4. Occupancy Times for Markov and Semi-Markov Models in Systems Reliability;Applied Reliability Engineering and Risk Analysis;2013-08-23

5. Transient Solution;Constructive Computation in Stochastic Models with Applications;2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3